Exam Electricity and Magnetism 2

Thursday, November 8, 2007, 14:00-17:00

Before you start, read the following:
e There are 4 problems with a total of 50 points.
e Write your name and student number on every sheet of paper.

e Write the solution of each problem on a separate sheet of paper.

Illegible writing will be graded as incorrect.

Good luck!




Problem 1 (40 minutes; 12 points in total)

An infinitely long straight wire carries a uniform line charge density A. The
distance from the wire is s.

3 pnts (a) Give Gauss's law in integral form and use it to calculate the electric field
E: specify also the direction of E.

3 pnts (b) Find the potential V as function of s. Explain why you cannot choose
the reference point for the potential at s = oo; instead, choose it at
s = a. Compute the gradient of the potential and check that it yields
the correct field.

Next consider two infinitely long wires in the zy-plane, running parallel to the
z-axis at ¥ = +a, that carry uniform line charge densities +A and — A, see the
figure (the wires are perpendicular to the paper):
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3 pnts (¢) Find the potential at any point {(z,y, z), using the origin as your reference
point. Call s1 the distance to +A; express s; in y and z.

3 pnts (d) Show that the equipotential surfaces are circular cylinders, such that the
cross sections with the yz-plane are circles. Locate the axis (yp, 25) and
radius A of the cylinder that corresponds to a given potential V5. Define
k = exp(4megVo/A) and express (yo,20) and R in a and k. Sketch the
equipotential circles in the yz-plane.




Problem 2 {40 minutes; 12 points in total)

3 pnts (a) Give the Biot-Savart law and use it to find the magnetic field at a distance
z above the center of a circular loop of radius a which carries a steady
current 1.

For practical applications, uniform magnetic fields are frequently necessary.
One often uses so-called Helmholtz coils: two co-axial loops which carry cur-
rents in the same direction. Assume that the coils have their axes on the x-axis,
that they have radius a, carry a steady current I each, and are separated by a
distance b, see the figure:
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3 pnts (b) Find the magnetic fleld at a point P on the axis of the loops and a
distance z from the midpoint O.

3 pnts (¢) Expand the expression for the field in a power series retaining terms to
order 2% (use f(y) = f(0} + yf'(0) + Ly f"(0) + ... for small ).

2 pnts (d) What relationship must exist between a and b such that the z*-terms
vanish? What is the significance of this? Show that the field due to the
coils to this order and under these conditions is given by
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Problem 3 (40 minutes; 13 points in total)

3 pnts (a) Give Ampere’s law in integral form and use it to calculate the magnetic
field due to an infinite wire carrying a current I at a distance s from the

wire.

Two infinite parallel wires separated by a distance d carry equal currents / in
opposite directions, with [ increasing at the rate dI/dt. A square loop of wire
of length d on a side lies in the plane of the wires, at a distance d from one of
the parallel wires, as illustrated in the figure:
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3 pnts (b) Calculate the magnetic flux crossing the square loop due to the magnetic
fields from the wires.

4 pnts (c) Give Faraday’s law in integral form. Find the emf induced in the square
loop. Is the induced current clockwise or anticlockwise? Justify your

answer.

3 pnts (d) You have solved the above problem in the so-called quasistatic régime.
When is this approximation valid? Discuss qualitatively the correct dy-
namic electromagnetic fields due to the changing current in the wire.




Problem 4 (40 minutes; 15 points in total)

A plane wave of (angular) frequency w travels in the z-direction through vac-
uum. The electric field is polarized in the y-direction with amplitude Fy:

E(z,y, 2, t} = Epcoslkr — wt) g .

4 pnts (a) Give Maxwell’s equations (in vacuum) in differential form. Show that
E(z,y, z,t) obeys all four equations and find the associated magnetic
field B(z,y,z,t). Sketch the £ and B fields in the (z,y,z) coordinate

systermn.

2 pnts (b) Calculate the Poynting vector § and average over a full eycle to get the
intensity vector [.

4 pnts (¢) The same wave is observed from an inertial system S’ moving in the z-
direction with speed v relative to the original system. Find the fields £
and B’ in § and express them in terms of the coordinates {z',¢", 2, ")
in 5’. Explain why (or derive) kz — wt = k'z’ — w't’.

3 pnts (d) Find the frequency ', wavelength X', and the speed of the waves in "
What happens to the frequency, amplitude, and intensity of the wave
when v approaches ¢?

Lorentz transformation of the electric field:
E = y(E+7xB).;

for the magnetic field, replace E — ¢B and B — —E‘/c;
v={1-v?/c?)"2
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